Hybrid Anomaly Detection via Multihead Dynamic Graph Attention Networks for Multivariate Time Series
نویسندگان
چکیده
In the real world, a large number of multivariate time series data are generated by Internet Things systems, which composed many connected sensing devices. Therefore, it is impractical to consider only single univariate for decision-making. High-dimensional decrease performance traditional anomaly detection methods. Moreover, previously developed methods capture temporal correlations instead spatial correlations. necessary learn and between different timestamps. this paper, achieve improved series, we propose novel architecture based on graph attention network (GAT) with multihead dynamic (MDA). This framework simultaneously learns dependencies sensors in both dimensions. To tackle overfitting problem autoencoder (AE)-based methods, hybrid approach that combines generative adversarial (GAN) as reconstruction model multilayer perceptron (MLP) prediction-based detect anomalies together. The proposed paper called HAD-multihead GAT (MDGAT). Extensive experiments public benchmarks demonstrate superior HAD-MDGAT over state-of-the-art
منابع مشابه
Anomaly Detection on Graph Time Series
In this paper, we use variational recurrent neural network to investigate the anomaly detection problem on graph time series. The temporal correlation is modeled by the combination of recurrent neural network (RNN) and variational inference (VI), while the spatial information is captured by the graph convolutional network. In order to incorporate external factors, we use feature extractor to au...
متن کاملECG Anomaly Detection via Time Series Analysis
Recently, wireless sensor networks have been proposed for assisted living and residential monitoring. In such networks, physiological sensors are used to monitor vital signs e.g. heartbeats, pulse rates, oxygen saturation of senior citizens. Sensor data is sent periodically via wireless links to a personal computer that analyzes the data. In this paper, we propose an anomaly detection scheme th...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملAnomaly Detection for Univariate Time-Series Data
Some of the biggest challenges in anomaly based network intrusion detection systems have to do with being able to handle anomaly detection at huge scale, in real time. The incoming data stream is homogeneous, containing different anomalous patterns along with a large amount of normal data. We pose the problem as that of detecting the anomaly in the data stream in realtime. We define an approach...
متن کاملTransfer Learning for Time Series Anomaly Detection
Currently, time series anomaly detection is attracting significant interest. This is especially true in industry, where companies continuously monitor all aspects of production processes using various sensors. In this context, methods that automatically detect anomalous behavior in the collected data could have a large impact. Unfortunately, for a variety of reasons, it is often difficult to co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3167640